OVERVIEW

Problem Statement
- Online square sparsifying transform learning & applications

Motivations
- Big data -> large training set -> batch learning expensive.
- Real-time applications = data arrives sequentially, and must be processed sequentially to limit latency.

Contributions
- We propose online and mini-batch transform learning methods that:
 - alternate between sparse coding and transform update
 - are amenable to big data, and real-time applications
 - converge to the set of stationary points of the cost
 - are cheap in computations, memory, and latency
 - are cheaper than online synthesis dictionary learning
 - encourage well-conditioning
- Proposed online schemes outperform batch methods in sparse representation & denoising, while being much faster.

BATCH LEARNING OF SPARSE MODELS

- Synthesis dictionary learning is typically non-convex and NP-hard, and algorithms [4] are computationally expensive.
- Batch Square Transform Learning [1, 2]

\[\mathbf{W} \] is computed exactly & cheaply by thresholding \(\mathbf{W} \) by the largest magnitude elements. Least squares signal estimate: \(\mathbf{y} = \mathbf{W} \mathbf{x} \).

ONLINE SQUARE TRANSFORM LEARNING

- Online Learning & Sparse Coding: For \(t = 1, 2, 3, \ldots \), solve

\[\min_{\mathbf{W} \in S} \frac{1}{2} \sum_{t} \| \mathbf{y}_t - \mathbf{W} \mathbf{x}_t \|^2_2 + \lambda \| \mathbf{W} \|_1 \]

- Mini-Batch Learning & Sparse Coding: For \(j = 1, 2, 3, \ldots \), solve

\[\min_{\mathbf{W} \in S} \frac{1}{2} \sum_{t = jT}^{(j+1)T-1} \| \mathbf{y}_t - \mathbf{W} \mathbf{x}_t \|^2_2 + \lambda \| \mathbf{W} \|_1 \]

ONLINE LEARNING SCHEMATIC

CONVERGENCE ANALYSIS

- Prior work [3] showed the convergence of biconvex online synthesis learning.
- We make simpler assumptions here than in prior work [3]
- Our problems are not biconvex. We study the following costs:
 - The objective of the online transform update step is \(g_0(\mathbf{W}) = \frac{1}{2} \sum_{t} \| \mathbf{y}_t - \mathbf{W} \mathbf{x}_t \|^2_2 + \lambda \| \mathbf{W} \|_1 \)
 - The empirical objective function (for batch learning) is \(g_0(\mathbf{W}) = \frac{1}{2} \sum_{t} \| \mathbf{y}_t - \mathbf{W} \mathbf{x}_t \|^2_2 + \lambda \| \mathbf{W} \|_1 \)
 - The expected transform learning cost is \(g_0(\mathbf{W}) = \mathbb{E}_{\mathbf{x}}[\| \mathbf{y} - \mathbf{W} \mathbf{x} \|^2_2 + \lambda \| \mathbf{W} \|_1] \)

MINI-BATCH ALGORITHM FOR (P2)

- Sparse Coding: solve for \(x_t \) in (P1) with fixed \(W_t \): \(x_{t+1} \)
 - Cheap Solution: \(x_{t+1} = \arg \min_{x} \| \mathbf{W}_t \mathbf{x} - \mathbf{y}_t \|^2_2 + \lambda \| \mathbf{x} \|_1 \)
- Transform Update: solve for \(W_{t+1} \) in (P1) with fixed \(x_t \):
 - Minimize \(\frac{1}{2} \sum_{t} \| \mathbf{W}_{t+1} \mathbf{x}_t - \mathbf{y}_t \|^2_2 + \lambda \| \mathbf{W}_{t+1} \|_1 \)

MINI-BATCH DENOISING OF BIG IMAGES

ACKNOWLEDGEMENT

REFERENCES